近似数教案6篇
通过设定开放性问题,教案能够鼓励学生进行深入讨论,培养思维的广度,教案的灵活性使教师能够在课堂中解决各种突发问题,提升教学质量,以下是18范文网小编精心为您推荐的近似数教案6篇,供大家参考。

通过设定开放性问题,教案能够鼓励学生进行深入讨论,培养思维的广度,教案的灵活性使教师能够在课堂中解决各种突发问题,提升教学质量,以下是18范文网小编精心为您推荐的近似数教案6篇,供大家参考。
近似数教案篇1
一、教学目标
(一)知识与技能
1、认识“四舍五入”法是截取积的近似数的一般方法。
2、掌握求小数乘法的积的近似数的方法。
(二)过程与方法
经历求小数乘法的积的近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。
(三)情感态度与价值观
在学习活动中,激发学生的学习兴趣,感受知识源于生活。
二、教学重点
会用“四舍五入”法截取积是小数的近似数。
三、教学难点
能根据生活实际灵活截取积是小数的近似数。
四、新授
(一)导入(复习导入)
师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?
生:小数成整数和小数成小数。
师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?
生:求小数的近似数。
师:还都记得怎么做吗?
生:记得(忘了)。
师:让我们先来热热身,看看谁掌握的最为牢固。
(ppt展示题目)
求下列小数的近似数,并说出你的思考过程。
5.3456.2680.402
要求:
1、(精确到十分位)
2、省略百分位后面的尾数。
通过做题,总结规律:
1、先确定保留的数位,在要保留的'数位下划条横线;
2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)
3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉
(二)情景导入
例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)
找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。
0.049×45=2.205≈2.2(亿个)竖式略
答:
此处强调两点,一个单位,一个答句不能丢。
(三)、经典练习
0.95×0.95(得数保留一位小数)
0.95×0.95=0.9025≈0.9(竖式略)
想一想,若此题改为保留两位小数,怎么做?(做在练习本上)
0.95×0.95=0.9025≈0.90(取近似数)
(四)、做一做(书上)p11现学现练,加深印象。
1、计算下面各题
0.8×0.9=0.72≈0.7(得数保留一位小数)
1.7×0.45=0.765≈0.77(得数保留两位小数)
2、一种大米的价格是每千克3.85元,买2.5kg应付多少钱?(联系实际生活,保留适当的小数位数)
延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!
五、小结
1、学生自己谈收获。
2、老师总结课程重点。
近似数教案篇2
课题四:
商的近似数
教学内容:
教科书第23页的例7和“做一做”中的题目。
教学目的:
1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.
2、提高学生的比较、分析、判断的能力。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
3.724.185.256.037.98
2.按“四舍五入”法,将下列各数保留两位小数.
1.4835.3478.7852.864
7.6024.0035.8973.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、新课
1.教学例6.
教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到“角”。
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
2.做第23页“做一做”中的题目.
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
三、巩固练习
1、求下面各数的近似数:
3.81÷732÷42246.4÷13
2、书上的作业。
近似数教案篇3
设计理念:
培养学生收集数据、归纳总结知识和解决实际问题的能力。
教学内容:
北师大版11-12页《近似数》
教材分析:
近似数是在学生学习了本单元亿以内数的认识、读写和大数的比较和改写的基础上进行学习的,使学生进一步体会什么是近似数以及怎样求一个数的近似数,在本节知识学习中学生最容易出问题的环节是近似数的求法(位数的确定,是舍还是入),特别是需要进位时,前面是9的连续进位,应重视数位的确定和数字的入舍的教学。
教学目标:
1、结合具体情境使学生理解近似数在实际生活中的作用,能用四舍五入法求一个数的近似数。
2、提高学生收集信息的能力和解决实际问题的'能力。
3、培养学生的数感,感受数学与生活的密切联系。
教学重点:
1、掌握用四舍五入法求一个数的近似数的方法。
2、正确进行近似数的改写。
教学关键:
找准数位,看清入舍,注意约等号。
教学准备:
课前收集的数据资料
教学过程:
一、认识近似数
(1)明确准确数和近似数。
师:同学们说一说你家里有几口人?我们这个班一共有多少同学?你们小组又有几个同学呢?这些数都是准确数吗?
师:那么我们伟大的祖国幅员辽阔,人口众多,哪位同学知道我国现在的人口有多少呢?我国的国土面积是多少呢?(生答)
师: 13亿是一个准确数吗?960万平方千米呢?
这样的数又是什么数呢?
点拨:像你家里有多少人,班里有多少同学等这样的数就是准确数。
像我国人口大约有13亿,我国国土面积大约有960万平方千米,这样的数就是近似数,一般来说近似数前面都要带上大约两个字。
(2)准确数与近似数的判别。
①学生以小组为单位把自己收集的数据按照准确数和近似数进行分类,并讨论这些数据所表示的实际意义。
②小组汇报,交流。
二、求一个数的近似数
提问:我们找到了这么多近似数,在生活中,人们经常使用哪些方法得到一个数的近似数呢?(学生根据生活经验思考、发言)
同学们提到用四舍五入法可以得到一个数的近似数,那么我们怎样理解四舍五入呢?怎样用四舍五入法求一个数的近似数呢?你愿意尝试一下吗?
请同学们打开课本11页看填一填 说一说
出示:某市在校学生今年共植树148264棵。
(1)四舍五入到十位:约148260棵;
(2)四舍五入到百位:约148300棵;
观察第一组数据小组讨论:①原数的个位是几?四舍五入后是几?它的十位有变化吗?说明什么?
观察第二组数据小组讨论:②原数的十位是几?四舍五入后十位是几?它的百位发生了什么变化?说明什么?
提问:通过以上观察分析你们从中有什么发现?(四舍五入到十位要找准什么位?入舍什么位?四舍五入到百位、千位、万位呢?)
学生尝试完成
四舍五入到千位:约( )棵;
四舍五入到万位:约( )棵。
知识反馈,强调重点。
小结:把一个数四舍五入到某一位,要看后一位,如果后一位够5,就向前一位入1(五入),尾数改写成0;如果后一位不够5,舍去(四舍),尾数改写成 0。在四舍五入时关键是要找准数位,看清入舍。
学生自学把一个数改写成以万为单位的近似数。
①出示:148264( )万
学生独立完成,同桌交流,说明方法。
(提示:①找准数位 ②用四舍五入法省略尾数并添写单位 ⑶用什么符号)
是约等号,读作约等号。
②学生两人结合互相出题,并检查。
引导学生总结把一个数改写成以万为单位的近似数的方法,强调约等号的使用。
三、作业设计
(1)判断题
①新绛县人口有32万。 ( )
②10000010万 ( )
(2)教材第12页第1题。
在做之前,可以先带领全班同学共同做31777精确到万位是多少这道题。学生说方法,然后独立完成后面的练习。做完之后,可以请学生把这些省市的森林面积按一定顺序排列。
(3)教材第12页第三题。(强调连续进位的方法)
(4)思维训练:括号里能填几?
49( )83550万 49( )83549万
(5)课后延伸
阅读13页数学知识,搜集信息,了解数的发展史。
四、课堂总结
今天我们学习了哪些内容?你有什么收获?
板书设计:
近 似 数
35人准确数 约13亿近似数
某市在校学生今年共植树148264棵。
四舍五入到十位:约148260棵;
四舍五入到百位:约148300棵;
四舍五入到千位:约( )棵;
四舍五入到万位:约( )棵。
148264( )万
是约等号,读作约等号。
近似数教案篇4
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空.
近似数的.结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.28 12.71 4.86 7.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.
(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.47 0.239 4.08
(2)精确到百分位:5.344 6.268 0.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:3672800000 648500000
(2)保留两位小数:4853900000 288160000
板书设计
求一个小数的近似数
例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例 2 61581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3 573000000吨=5.73亿吨 .5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
数学教案-求一个小数的近似数
近似数教案篇5
学习目标: 理解精确度和有效数字的意义;准确地按要求求一个数的近似数。
学习重点:近似数、精确度和有效数字的意义,
学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.
学习过程:
一、自主学习
准确数与近似数:
(1)初一(4)班有42名同学,数42是 数;
(2)每个三角形都有3个内角,数3是 数;
(3)我国的领土面积约为960万平方千米,数960万是 数;
(4)王强的体重是约49千克,数49是 数.
二、合作探究
1、王强的身高为165cm,数165是一个 数,表示王强的.身高大于或等于 cm,而小于 cm。
2、长江长约6300千米,是一个 数,表示长江长大于或等于 千米,而小于 千米。
3、按四舍五入法对圆周率 取近似值:
(精确到个位), (精确到0.1,或叫做精确到十分位),
(精确到0.01,或叫做精确到 分位),
(精确到 ,或叫做精确到 ),
(精确到 ,或叫做精确到 ), ………
4、有效数字:从一个数 起,到 止,所有数字都是这个数的有效数字。
5、 3.256精确到 位,有 个有效数字是 ;
5.08精确到 位,有 个有效数字是 ;
6.3080精确到 位,有 个有效数字是 ;
0.0802精确到 位,有 个有效数字是 ;
3.02万精确到 位,有 个有效数字是 ;
1.68×105精确到 位,有 个有效数字是 。
6、 按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001) (2)30 435(保留3个有效数字)
(3)1.804(保留2个有效数字) (4)1.804(保留3个有效数字)
三、巩固提高
1、完成课本练习。
2、 用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148 (精确到千分位); 解:0.65148
(2)1.5673 (精确到0.01);
(3)0.03097 (保留三个有效数字);
(4)75460 (保留三个有效数字);
(5)90990 (保留二个有效数字);
(6) 64.8 (精确到个位);
(7) 0.0692 (保留2个有效数字);
(8)399720 (保留3个有效数字)。
2、下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?
(1)32; 解:精确到 位,有 个有效数字,是 ;
(2)17.93; 解:精确到 位,有 个有效数字,是 ;
(3)0.084; 解:精确到 位,有 个有效数字,是 ;
(4)7.250; 解:精确到 位,有 个有效数字,是 ;
(5)1.35×104; 解:精确到 位,有 个有效数字,是 ;
(6)0.45万; 解:精确到 位,有 个有效数字,是 ;
(7)2.004; 解:精确到 位,有 个有效数字,是 ;
(8)3.1416. 解:精确到 位,有 个有效数字,是 。
近似数教案篇6
【教学目标】
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
【教学重点】
使学生掌握求一个小数的近似数的方法。
【教学难点】
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
【教具】
多媒体课件
【教学过程】:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的'方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0。984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、检测反馈
1、教材第74页上、下的“做一做”。
2、教材第75页练习十二第一、2题。第3、4题
四、板书设计教
求一个数的近似数
四舍五入
法
保留两位小数0.984≈0.98 142800千米=14.28万千米
保留一位小数0.984≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
教学反思:
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。