加法交换律教案5篇
为了让学生更好地理解知识点,教案的准备是必不可少的,我们需要认真编写教案,以确保教学进度不被耽误,以下是18范文网小编精心为您推荐的加法交换律教案5篇,供大家参考。
为了让学生更好地理解知识点,教案的准备是必不可少的,我们需要认真编写教案,以确保教学进度不被耽误,以下是18范文网小编精心为您推荐的加法交换律教案5篇,供大家参考。
加法交换律教案篇1
教材分析:
本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:配套课件。
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的一共有多少人?
参加活动的一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?
教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。
9、练习:
完成想想做做第一题前面两小题。
设计意图:教师是教学的'组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。
4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(28+17)+23=28+(17+23)
5、电脑出示:下面的Ο里能填上等号吗?
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第1题的后面两个小题。
设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
四、巩固练习。
1、完成“想想做做”第2题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、完成“想想做做”第3题第1行。
3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。
4、完成“想想做做”第4题。
使学生初步感受应用加法运算律可以使计算简便。
设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。
板书设计: 运算律
加法交换律 加法结合律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
(学生说的算式) =68(人) =68(人)
(28+17)+23=28+(17+23)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)
加法交换律教案篇2
设计说明
加法交换律的学习是在学生已经掌握了加法的意义,积累了大量的用交换两个加数的位置进行验算的知识经验的基础上进行教学的,因此,本节课的学习对于学生来说并不困难。本节课的教学教师注重唤醒学生的已有认知,借助归纳和演绎推理,引导学生自主发现加法交换律。具体设计如下:
1.创设情境,唤醒认知经验。
数学知识的学习是螺旋上升的,任何一个新知的学习都能在旧知的基础上找到生长点,因此,数学的学习实际就是同化和顺应的过程。新课伊始,教师为学生呈现“李叔叔骑车旅行”的生活化情境,并引导学生根据数学信息,借助已有的加法知识提出数学问题:李叔叔今天一共骑了多少千米?并提出不同的列式解答方法。学生在熟悉的情境中,自觉调动已有认知经验解决问题,使新知的学习植根于学生已有的知识基础上。
2.遵循教学主线,教给学生学习方法。
遵循这样一条教学主线:发现规律—验证规律—应用规律。在教学加法交换律时,先引导学生从解决情境图的实际问题中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是学习数学的一种很好的方法。学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中去,可以受益终生。
3.关注运算定律的形式化表达,培养学生的抽象能力和模型思想。
让学生用自己喜欢的方式把加法交换律表示出来,用文字、符号、字母都可以,并不加以限制,这样有利于培养学生的符号意识,提高学生的'抽象概括能力,为以后学习用字母表示数打下基础,同时,也有助于学生发散性思维的训练。
课前准备
教师准备 多媒体课件
教学过程
⊙创设情境,导入新课
师:同学们,你们喜欢旅游吗?(喜欢)
师:你们打算去什么地方旅游呢?(生汇报)
师:看来喜欢旅游的同学还真不少,有谁骑车旅行过呢?(生举手表示)骑车旅行不仅能锻炼身体,还能开阔视野,给我们带来好心情。瞧,李叔叔正骑车旅行呢!(播放课件)
你从中获取了哪些信息?和你的同桌互相说一说。(同桌交流)
师:谁愿意把你获取的信息和大家分享一下?
预设
生1:李叔叔准备骑车旅行一个星期。
生2:李叔叔今天上午骑了40 km,下午骑了56 km。要求李叔叔今天一共骑了多少千米。
师:说得不错!今天我们就来解决这个问题。
设计意图:从创设贴近学生生活实际的情境出发,让学生观看情境图并自主搜集信息,可以培养学生看图搜集信息的能力。
⊙自主探究,寻找规律
(课件出示例1)
1.解决问题,发现规律。
(1)独立计算,汇报结果。
师:在练习本上算一算李叔叔今天一共骑了多少千米。(学生独立计算)
师:谁来汇报一下自己解决问题的方法和结果?
(生汇报,教师板书)
预设
生1:用李叔叔上午骑的路程加上他下午骑的路程就是他今天一共骑的路程。40+56=96(km)。
生2:用李叔叔下午骑的路程加上他上午骑的路程也是他今天一共骑的路程。56+40=96(km)。
(2)引导学生观察算式,比较这两种算法。(出示课堂活动卡)
师:请同学们观察这两个算式,说说你有什么发现。
(相同点:两个算式都可以求出李叔叔今天一共骑了多少千米;不同点:两个算式的加数交换了位置)
(3)思考:你能表示出这两个算式的关系吗?
[课件出示:40+56( )56+40]
师:想一想,( )里能填什么符号?(课件出示:=)
设计意图:引导学生观察,发现两种算法的相同点与不同点,从而确定这两个加法算式的关系,进而使学生对加法交换律有了感性认识,培养了学生的发现意识。
2.验证、总结加法交换律。
(1)思考:这一组算式交换了两个加数的位置,它们的和没有变,是不是任意两个数相加,都有这样的规律呢?谁能任意说出一个加法算式来验证一下呢?(18+17=17+18)
(2)验证。
师:这两个数相加符合这个规律,其余的数是不是也符合这个规律呢?请同学们在练习本上举几个例子并验证,然后在小组内交流一下。(小组内交流汇报,教师板书)
预设
生1:28+71=71+28,这两个算式的加数相同,只是交换了位置,它们的和都是99,所以这两个算式用等号连接。
生2:36+54=54+36,加数相同,位置不同,但是这两个算式的结果都是90,所以这两个算式用等号连接。
加法交换律教案篇3
第一课时:
教学内容:p28例1(加法交换律)例2(加法结合律)
教学目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
引导学生观察主题图
教师根据学生提出的问题板书。
二、新授
练习本上用自己的方法列出综合算式,解答黑板上问题。
教师巡视,找出课堂上需要的答案,找学生板演。
学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
试着再举出几个这样的例子。
根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?
学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。
教师根据学生的小结,板书。
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a
学生用多种形式表示。
符号表示:△+☆=☆+△
引导学生观察第二组算式,总结出:
(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。
学生继续观察几组算式。
出示:
(69+172)+28
69+(172+28)
155+(145+207)
(155+145)+207
通过上面的几组算式,你们发现了什么?
学生总结观察到的规律。
教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
学生用自己喜欢的方式表示加法结合律。
符号表示:(△+☆)+○=△+(☆+○)
教师板书:
(a+b)+c=a+(b+c)
学生根据这两个运算定律,举一些生活中的例子。
三、巩固练习
做一做
4、1
四、小结
学生小结本节课学习的`加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
五、作业:3
板书设计:
加法的运算定律
(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?
40+56=96(千米)56+40=96(千米)88+104+96104+96+88
=192+96=200+88
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
┆(学生举例)(69+172)+28=69+(172+28)
两个加数交换位置,和不变。155+(145+207)=(155+145)+207
这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,
和不变。这叫做加法结合律。
a+b=b+a(a+b)+c=a+(b+c)
加法交换律教案篇4
教学目标
1、经历加法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。
2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发展应用意识。
教学重难点
教学重点:理解并掌握加法交换律和乘法交换律的意义以及运用。
教学难点:会用符号或字母表示加法交换律和乘法交换律。
教学过程
一、练习导入、感受交换的好处
首先出示加法和乘法的计算题让学生快速口算出答案,接着给出两个复杂的算式。现在还能马上口算出答案吗?针对这两个算式你有什么想法?
二、合作探究,探索新知
1、将加法和乘法算式同时呈现,让学生一组一组观察,每组中的两个算式有什么相同和不同的地方?为什么可以把等号连起来?你还发现了什么?
2、通过模仿创造出几组加法和乘法算式,加以验证。观察教师的例子、自己仿写的以及书本中淘气和笑笑写的算式,和同伴交流自己的发现。
3、总结;课件出示内容;
4、寻找生活中的事例解释所发现的规律。
5、我会接着追问:关于交换律的`算式和事例学生们能举的完吗?你们能创造一个更简单的方法来表达发现的规律吗?
6、选择方法进行投影对比,让学生解释自己的方法,p23在对比评价中得出更简便的字母表示法(板贴a+b=b+a;a.b=b.a)这里要注重说清楚ab各表示什么,以及两个运算律的异同。
三、巩固规律
1、规则是我说算式,学生说交换后的算式,适时加入减法和除法,在学生产生冲突时继续追问:a+b=b+a;a.b=b.a那么a-b=b?a÷b=?。
四、深化练习,拓展提高
1、结合下面的例子说明等式为什么成立。通过现实背景理解交换律的实际意义。
2、运用规律填一填,了解学生对交换律的掌握情况。
3、计算下列各题,并运用规律进行验算,通过比较,发现利用交换律在计算中可以选择符合习惯的方式列竖式,还具有验算的作用,
4、接着出示课始的复杂运算鼓励学生运用所学的交换律使问题简单化。
五、全课小结
说说本节课有哪些收获?
加法交换律教案篇5
◇教学内容:
义务教育课程标准实验教科书四年级数学.下册p28-29页内容。
◇教学目标:
1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
◇教学重点:
理解并掌握加法交换律和加法结合律,能用字母来表示。
◇教学难点:
经历探索加法交换律和结合律的过程,发现并概括出运算规律。
◇教学准备:
多媒体课件
◇教学过程
一、谈话导入,鼓励猜想
1、出示图片牛顿与“万有引力”
2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。
二、合作交流,探索猜想
(一)故事激趣,初次猜想
1、朝三暮四
猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?
2、初步感知,大胆猜想
出示:3+4=4+3
师:仔细观察这两个加法算式,你发现了什么?
得出:两个加数交换位置,和不变。(适时板书)
(二)广泛举例,验证猜想。
师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)
师:既然是猜想,想不想知道猜的对不对?
生:想。
师:我们还得举例验证。
1、举例要求:
(1)任意两个数,求出他们的和;
(2)交换两个加数的位置,再求出两个数的和:
(3)比较两次的结果,判断式子是否相等。
2、学生汇报,师板书。
3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)
4、揭题:大家发现的这个规律叫什么呢?
学生交流后,师板书。
5、用字母表示加法交换律。
(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。
(学生可能使用文字,图形,符号等方式)
(2)用字母表示加法交换律:a+b=b+a
6、追问:加法交换律中,什么变了,什么没有变?
7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)
(3)出示教材56页的例题情境图。
解决:跳绳的有多少人?
28+17=45(人)17+28=45(人)
(三)规律延伸,猜想拓展。
1、根据反思,拓展规律。
师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?
生可能会说出以下几个想法?
“猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”
“猜想五:几个加数时,变换加数的'位置和也不变?“
2、举例探究,验证猜想。
师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
3、汇报交流,验证猜想。
师:哪些同学选择了“猜想二”又是怎样验证的?学生汇报,观察、总结
小结:
a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:
b、只要能举一个反倒,就能验证猜想肯定不成立。
(2)验证猜想三。
师:哪些同学选择了“猜想三”,又是怎样验证的?学生汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bxa。
(3)验证猜想四
师:哪些同掌选择了“猜想四”,又是怎样做的?
学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。