位置与关系教案5篇
具备实践性的教案能够培养学生的实际操作能力,教师准备教案是备课的重要环节之一,有助于提高学生的学习兴趣,18范文网小编今天就为您带来了位置与关系教案5篇,相信一定会对你有所帮助。
具备实践性的教案能够培养学生的实际操作能力,教师准备教案是备课的重要环节之一,有助于提高学生的学习兴趣,18范文网小编今天就为您带来了位置与关系教案5篇,相信一定会对你有所帮助。
位置与关系教案篇1
第一课时 2.1.1 平面
教学要求:能够从日常生活实例中抽象出数学中所说的平面 理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解可以作为推理依据的三条公理.
教学重点:理解三条公理,能用三种语言分别表示.
教学难点:理解三条公理
第二课时 2.1.2 空间直线与直线之间的位置关系
教学要求:了解空间两条直线的三种位置关系,理解异面直线的定义,掌握平行公理,掌握等角定理,掌握两条异面直线所成角的定义及垂直
教学重点:掌握平行公理与等角定理.
教学难点:理解异面直线的定义与所成角
第三课时 2.1.3 空间直线与平面之间的位置关系
2.1.4 平面与平面之间的.位置关系
教学要求:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系.
教学重点:掌握线面、面面位置关系的图形语言与符号语言.
教学难点:理解各种位置关系的概念.
位置与关系教案篇2
1.知识结构
2.重点、难点分析
重点:的性质和判定.因为它是本单元的基础(如:切线的判断和性质定理是在它的基础上研究的),也是高中解析几何中研究的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对相切要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议
本节内容需要一个课时.
(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把点和圆的位置关系研究的方法迁移过来,指导学生归纳、概括;
(2)在教学中,以形归纳数, 以数判断形为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标 :
1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;
2、通过的探究,向学生渗透分类、数形结合的思想,培养学生
观察、分析和概括的能力;
3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.
教学重点:的判定方法和性质.
教学难点 :直线和圆的三种位置关系的研究及运用.
教学设计:
(一)基本概念
1、观察:(组织学生,使学生从感性认识到理性认识)
2、归纳:(引导学生完成)
(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点
3、概念:(指导学生完成)
由直线与圆的公共点的个数,得出以下直线和圆的.三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.
研究与理解:
①直线与圆有唯一公共点的含义是有且仅有,这与直线与圆有一个公共点的含义不同.
②直线和圆除了上,请保留此标记。)述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?
(二)直线与圆的位置关系的数量特征
1、迁移:点与圆的位置关系
(1)点p在⊙o内 d
(2)点p在⊙o上 d=r;
(3)点p在⊙o外 dr.
2、归纳概括:
如果⊙o的半径为r ,圆心o到直线l的距离为d,那么
(1)直线l和⊙o相交 d
(2)直线l和⊙o相切 d=r;
(3)直线l和⊙o相离 dr.
(三)应用
例1、在rt△abc中,c=90,ac=3cm,bc=4cm,以c为圆心,r为半径的圆与ab有何种位置关系?为什么?
(1)r=2cm; (2)r=2.4cm; (3)r=3cm.
学生自主完成,老师指导学生规范解题过程.
解:(图形略)过c点作cdab于d,
在rt△abc中,c=90,
ab=,
∵ ,abcd=acbc,
(cm),
(1)当r =2cm时 cdr,圆c与ab相离;
(2)当r=2.4cm时,cd=r,圆c与ab相切;
(3)当r=3cm时,cd
练习p105,1、2.
(四)小结:
1、知识:(指导学生归纳)
2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.
(五)作业 :教材p115,1(1)、2、3.
探究活动
问题:如图,正三角形abc的边长为6 厘米,⊙o的半径为r厘米,当圆心o从点a出发,沿着线路ab一bc一ca运动,回到点a时,⊙o随着点o的运动而移动.在⊙o移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.
略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米.
①当⊙o的半径r=9厘米时,⊙o在移动中与△abc的边共相切三次,即切点个数为3.
②当0
后略
位置与关系教案篇3
一、主题分析与设计
本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
?数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的'数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪??
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本p13练一练1、2及习题7。2 1、5
2、(讨论解答)课本p13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价p5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧
位置与关系教案篇4
目标:
知识目标:经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径r和r的数量关系的联系
重点和难点
重点:圆与圆之间的几种位置关系
难点:两圆外切、内切与两圆圆心距d、半径r和r的数量关系的联系
教学过程设计
一、从学生原有的认知结构提出问题
1)复习点与圆的位置关系;2)复习直线与圆的位置关系。
二、师生共同研究形成概念
1.书本引例
☆ 想一想 p 125 平移两个圆
利用平移实验直观地探索圆和圆的位置关系。
2.圆与圆的位置关系
每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径r和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出
☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;
若两圆有一个交点,则这两个圆的位置关系是 相切 ;
若两圆有两个交点,则这两个圆的位置关系是 相交 ;
☆ 想一想 书本p 126 想一想
通过实际例子让学生理解圆与圆的'位置关系。
3.圆与圆相切的性质
☆ 想一想 书本p 127 想一想
旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。
如果两圆相切,那么两圆的连心线经过切点
4.讲解例题
例1.已知⊙ 、⊙ 相交于点a、b,∠a b = 120°,∠a b = 60°, = 6cm。求:(1)∠ a 的度数;2)⊙ 的半径 和⊙ 的半径 。
5.讲解例题
例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜pq成一条直线,tp、np分别为两圆的切线,求∠tpn的大小。
三、随堂练习
1.书本 p 128 随堂练习
2.《练习册》 p 59
四、小结
圆与圆的位置关系;圆心距与两圆半径和两圆的关系。
五、作业
书本 p 130 习题3.9 1
六、教学后记
位置与关系教案篇5
教学目标:
1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。
教学重点:
1、余角、补角、对顶角的概念
2、理解等角的余角相等、等角的补角相等、对顶角相等。
教学难点:
理解等角的余角相等、等角的补角相等。判断是否是对顶角。
教学方法:
观察、探索、归纳总结。
准备活动:
在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?
教学过程:
第一环节情境引入
活动内容:搜集生活中常见的图片,让学生从中找出相交线和平行线。
第二环节探索发现
内容一:观察图中各角与∠1之间的关系:
∠adf+∠1=180
∠adc+∠1=180
∠bdc+∠1=180
∠edb+∠1=180
∠2=∠1
教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系。在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念。
提醒学生:互为余角、互为补角仅仅表明了两个角之间的`度量关系,并没有对其位置关系作出限制。(为下面的对顶角的学习作铺垫)
让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论。鼓励学生用自己的语言表达,并说明理由。
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?
(3)它们的大小有什么关系?能试着说明理由吗?
由此引出对顶角的概念和“对顶角相等”的结论。
第三环节小诊??
活动内容:判断下列说法是否正确
1(1)300,700与800的和为平角,所以这三个角互余。()
(2)一个角的余角必为锐角。()
(3)一个角的补角必为钝角。()
(4)900的角为余角。()
(5)两角是否互补既与其大小有关又与其位置有关()
2、你能举出生活中包含对顶角的例子吗?
3、下图中有对顶角吗?若有,请指出,若没有,请说明理由。
4、议一议:如上图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?你的根据是什么?
第四环节课堂小结
小结:熟记
(1)余角、补角的概念。
(2)同角或等角的余角相等,同角或等角的补角相等。
(3)对顶角的概念和“对顶角相等”。
第五个环节布置作业
1、习题2.1数学理解1,2
习题2.1问题解决1,2