三角形内角和教案通用8篇

一份具备灵活性的教案能够适应课堂上的变化,使教学更具适应性,教案的设计应考虑到课堂管理策略,以便于教师有效应对各种课堂情况,18范文网小编今天就为您带来了三角形内角和教案通用8篇,相信一定会对你有所帮助。

三角形内角和教案通用8篇

一份具备灵活性的教案能够适应课堂上的变化,使教学更具适应性,教案的设计应考虑到课堂管理策略,以便于教师有效应对各种课堂情况,18范文网小编今天就为您带来了三角形内角和教案通用8篇,相信一定会对你有所帮助。

三角形内角和教案篇1

设计说明

在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。

课前准备

教师准备 多媒体课件

学生准备 三角板

教学过程

⊙复习导入

师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)

师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)

师:这四个角一共是多少度?(360°)

师:你是怎么算的?(90°×4=360°)

师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。

师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)

设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。

⊙探究新知

1.探究特殊三角形的内角和。

师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的`三角形)

师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)

明确:把三角形三个内角的度数合起来就叫做三角形的内角和。

师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)

师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)

2.探究一般三角形的内角和。

(1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)

(2)操作、验证一般三角形的内角和是180°。

师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?

①小组合作,探究验证方法。

师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。

②交流汇报。

预设

组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。

组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。

③动手操作,验证猜想。

师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)

师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。

3.得出结论。

师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)

设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。

三角形内角和教案篇2

一、学生知识状况分析

学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

二、教学任务分析

上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

(2)灵活运用三角形内角和定理解决相关问题。

数学能力:用多种方法证明三角形定理,培养一题多解的能力。

情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.

三、教学过程分析

本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结

第一环节:情境引入

活动内容:(1)用折纸的方法验证三角形内角和定理.

实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的`结果

(1) (2) (3) (4)

试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

活动目的:

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

教学效果:

说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

第二环节:探索新知

活动内容:

① 用严谨的证明来论证三角形内 角和定理.

② 看哪个同学想的方法最多?

方法一:过a点作de∥bc

∵de∥bc

dab=b,eac=c(两直线平行,内错角相等)

∵dab+bac+eac=180

bac+ c=180(等量代换)

方法二:作bc的延长线cd,过点c作射线ce∥ba.

∵ce∥ba

ecd(两直线平行,同位角相等)

ace(两直线平行,内错角相等)

∵bca+ace+ecd=180

b+acb=180(等量代换)

活动目的:

用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。

教学效果:

添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.

第三环节:反馈练习

活动内容:

(1)△abc中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

(2)△abc中 ,c=90,a=30,b=?

(3)a=50,c,则△abc中b=?

(4)三角形的三个内角中,只能有____个直角或____个钝角.

(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

(6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?

(7)已知:△abc中,b=2a。

(a)求b的度数;

(b)若bd是ac边上的高,求 dbc的度数?

活动目的:

通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

教学效果:

学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。

第四环节:课堂小结

活动内容:

① 证明三角形内角和定理有哪几种方法?

② 辅助线的作法技巧.

③ 三 角形内角和定理的简单应用.

活动目的:

复习巩固本课知识,提高学生的掌握程度.

教学效果:

学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.

课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题

四、教学反思

三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

(1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

(2) 充分展示学生的个性,体现学生是学习的主人这一主题。

(3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

三角形内角和教案篇3

教学内容:

人教版义务教育课程标准试验教科书数学四年级下册第67页。

设计理念:

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

教材分析:

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的`形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

学情分析:

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

教学目标:

1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。

2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。

3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识

三角形内角和教案篇4

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

重点、难点:

经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

三角形内角和是180°的探索和验证。

教学过程:

一、揭示课题

1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)

出示课件

2、提出问题,为后面做铺垫。

现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

二、新授

1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)

师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?

(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)

1、拼一拼,折一折

孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)

我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)

通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°

此时,这三个三角形还争吵吗?它们都心服口服了。

孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?

三、练习

1、抢答游戏(答对的给你的`那一小组加一分)

这个三角形的内角和是多少度。

把这个三角形平均分成两个小三角形,每个小三角形是多少度。

这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?

三个小三角形拼成一个更大的三角形,它的内角和是多少度?

2、智慧角

3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)

4、知识扩展

其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)

出示课件

孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!

四、总结

任何一个三角形不分大小,不分形状,它们的内角和都是180°

三角形内角和教案篇5

(一)教材的地位和作用

?三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

(二)教学目标

基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

二、说教法,学法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。

三,说教学过程

我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

引入

呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

【设计意图】

让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。

猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢

【设计意图】

引导学生提出合理猜测:三角形的内角和是180°。

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】

利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

深化

质疑: 大小不同的三角形, 它们的内角和会是一样吗

观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

结论: 角的两条边长了, 但角的大小不变。因为角的.大小与边的长短无关。

实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

结论:活动角就是一个平角180°, 另外两个角都是0°。

【设计意图】

小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。

对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

(五)应用

1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

【设计意图】

习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

三角形内角和教案篇6

教学内容:

人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想

3、在探索中体验发现的乐趣,增强学好数学的信心、

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

验证所有三角形的内角之和都是180°

教具准备:

多媒体课件。

学具准备:

量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、设疑引思

1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的"度数、

2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、

3、设问:老师为什么能很快”猜”出第三个角的度数呢?

三角形还有许多奥妙,等待我们去探索、

二、探索交流,获取新知

1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论。

2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论。

3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论。

4、师利用课件演示将一个三角形的三个角拼成一个平角的过程。

5、验证:flash演示三种三角形割补过程。

发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的'内角和都是180度。

6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和———180°

三、应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四、作业:作业本

五、全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

三角形内角和教案篇7

学科:数学

年级/册:4年级下册

教材版本:人教版

课题名称:4年级下册第五单元《三角形的内角和》

教学目标:

掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

重难点分析

重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

教学方法:

1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的.习惯。

2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学过程

导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

(一)量一量:我们如何解决这个问题呢?

同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

(二)

1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

方法:

a、拼一拼的方法

b、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。

同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关

课堂练习(难点巩固)

总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!

三角形内角和教案篇8

教学目标

⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与

教师活动:学生活动媒体应用设计意图

目标达成

导入新课

一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?

我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠a、∠b、∠c来表示。

什么是三角形的内角和?

三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠a、∠b、∠c的式子来表示应该如何写?∠a+∠b+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

由三角形的内角引出三角形的内角和,“∠a+∠b+∠c”的'表示形式形象的体现出三内角求和的关系

二、动手操作,探究新知

1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3.学生测量

4.汇报的测量结果

除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

5、巩固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?

环节

三、应用所学,解决问题。

1、基础练习(课本第68页做一做)

在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

2、判断题

(1)大三角形的内角和大于180度。()

(2)三角形的内角和可能是180度。()

(3)一个三角形中最多只能有一个直角。()

(4)三角形的三个内角分别可能是30度,60度,70度。()

3、求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

四、总结:这节课你有什么收获?

★其他类似内容

1面积和面积单位教案优秀5篇

面积和面积单位教案优秀5篇

本文将为大家介绍五篇优秀的面积和面积单位教案。面积是数学中的重要概念,而面积单位则是用来衡量不同区域大小的标准。通过这些...

查看剩余 73% 面积和面积单位教案优秀5篇

2哭宝宝和笑宝宝教案模板6篇

哭宝宝和笑宝宝教案模板6篇

教案中的资源整合能够丰富课堂内容,为学生提供多元的学习体验,教案的设计反映了教师对课程目标的理解和把握能力,体现了其教学...

查看剩余 74% 哭宝宝和笑宝宝教案模板6篇

3幼儿园和树有关的教案推荐7篇

幼儿园和树有关的教案推荐7篇

研学旅行类的活动教案,将课堂延伸到大自然这本活的教科书里,通过教案的完善,我们能够更好地实现教育目标,18范文网小编今天就...

查看剩余 84% 幼儿园和树有关的教案推荐7篇

4幼儿园和树有关的教案模板5篇

幼儿园和树有关的教案模板5篇

一份详尽的教案能够帮助教师更好地组织课堂内容与活动,研学旅行类的活动教案,将课堂延伸到大自然这本活的教科书里,下面是18范...

查看剩余 75% 幼儿园和树有关的教案模板5篇

5幼儿园和树有关的教案参考7篇

幼儿园和树有关的教案参考7篇

创新型的教案,鼓励学生用不同的视角看待问题与挑战,研学旅行类的活动教案,将课堂延伸到大自然这本活的教科书里,下面是18范文...

查看剩余 72% 幼儿园和树有关的教案参考7篇